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Learning in Games

How do people get to play equilibrium?
Main question of interest in ‘learning in games’ (̸= games with learning)

Goals
Provide foundations for existing equilibrium concepts.
Capture lab behaviour.
Predict adjustment dynamics transitioning to new equilibrium.
(akin to ‘impulse response’ in macro; uncommon but definitely worth
investigating)

Select equilibria.
Algorithm to solve for equilibria.
Explain persistence of heuristics/nonequilibrium behaviour.
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Approachability

Setup:
Two players face repeated game. m-dimensional goal/multi-utility representation.
Goal of each player: control average vector of attributes s.t. approaches/excludes
(keeps away) target set S ⊂ Rm.

Brief detour: rationalising multi-utility.
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Multi-Utility Representation

≿⊆ X2: preorder (reflexive, transitive).

Want to allow for incompleteness.
x and y are incomparable if ¬(x ≿ y or y ≿ x). Ow, they are comparable.
E.g., choice by unanimity, incomparable attributes.

Definition

For any binary relation ≿ on X with symmetric part ∼, for any x ∈ X, x’s equivalence
class is [x] := {y ∈ X|x ∼ y} and the set of equivalence classes X̂ := {[x], x ∈ X}.

Remark

For any preorder ≿ on X, let ≿̂ on X̂ : ∀x, y ∈ X : [x]≿̂[y] if x ≿ y. Then, ≿̂ is partial order.
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Multi-Utility Representation

≿⊆ X2: preorder (reflexive, transitive).

Want to allow for incompleteness.
x and y are incomparable if ¬(x ≿ y or y ≿ x). Ow, they are comparable.
E.g., choice by unanimity, incomparable attributes.

Set of all linear extensions of ≿̂ on X: L(X̂, ≿̂).

Szpilrajn’s Theorem: any partial order can be extended to a linear order.
Remark 1: =⇒ L(X̂, ≿̂) ̸= ∅.
Remark 2: ≿̂ = ∩≥̃∈L(X̂,≿̂)≥̃.

Order dimension: dim(X,≿) := min{k ∈ N| ≥i∈ L(X̂, ≿̂), i = 1, ..., k : ≿̂ = ∩k
i=1 ≥i}.

dim(X,≿): min number of linear extensions of ≿̂ whose intersection yields ≿̂.
Examples:
≿̂ is linear order on X iff dim(X,≿) = 1.
If no distinct x, y are comparable (≿̂ is antichain) and dim(X,≿) = 2 since
≿̂ =≥ ∩ ≤.

If X = 2A and |A| = ∞, then dim(X,⊆) = ∞.
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Multi-Utility Representation

Definition

≿⊆ X2 admits a multi-utility representation u : X → Rm with m ∈ N iff ∀x, y ∈ X, x ≿

y ⇐⇒ u(x) ≥ u(y).

Proposition 1 (Ok 2002 JET)

Let ≿ be preorder on X.
(1) ≿ admits a multi-utility representation u only if dim(X,≿) < ∞.
(2) If X̂ countable, ≿ admits a multi-utility representation u if and only if dim(X,≿) < ∞.

Alternative (social) interpretation: ∃U ⊂ RX such that x ≿ y ⇐⇒ u(x) ≥ u(y)∀u ∈ U.

Proof Idea

Take X finite. Let ux(y) = 1{y≿x}. u(y) = (ux(y))x∈X .

Let x ≿ y. (a) ∀z ∈ X : (uz(x) = 0) ⇐⇒ (z ≿ x) =⇒ (z ≿ y) ⇐⇒ (uz(y) = 0)

(b) ∀z ∈ X : (uz(y) = 1) ⇐⇒ (y ≿ z) =⇒ (x ≿ z) ⇐⇒ (uz(x) = 1).

(a) + (b) =⇒ u(x) ≥ u(y).
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Multi-Utility Representation

Definition

≿⊆ X2 admits a multi-utility representation u : X → Rm with m ∈ N iff ∀x, y ∈ X, x ≿

y ⇐⇒ u(x) ≥ u(y).

Proposition 1 (Ok 2002 JET)

Let ≿ be preorder on X.
(1) ≿ admits multi-utility representation u only if dim(X,≿) < ∞.
(2) If X̂ countable, ≿ admits a multi-utility representation u if and only if dim(X,≿) < ∞.

Proposition 2 (Ok 2002 JET)

(a) X0 = ×k
i=1Xi, with Xi be metric space and ≿i be preorders on Xi, i = 0, 1, ..., k;

(b) Each Xi is s.t. {yi | yi ≻i xi} is open for every xi ∈ Xi and i = 1, ..., k; and

(c) x ≿0 y ⇐⇒ xi ≿i yi ∀i = 1, ..., k.
If X0 admits a countable≿0-dense subset, then≿0 admits amulti-utility representation
u which is continuous in the product topology.
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Approachability

Setup:
Two players face repeated game. m-dimensional goal/multi-utility representation.
Goal of each player: control average vector of attributes s.t. approaches/excludes
(keeps away) target set S ⊂ Rm.

Back to approachability... Blackwell (1956). Good reference: Maschler, Solan, Zamir
(2013 Book, Ch. 14).

Actions: Ai; Stage-Game Payoffs: u1 : A1 × A2 → Rm u2 := –u1; (endowed with
d(x, y) = ∥x – y∥2);

Histories: Ht := At, H := ∪tHt; Strategies: σi : H → ∆(Ai); λi ∈ ∆(Ai).

Expected Payoffs: ui(λi, λ–i) =
∑

ai

∑
a–i

λi(ai)ui(ai, a–i)λ–i(a–i) ∈ Rm.

Feasible Expected Payoffs for λi: Ui(λi) := {ui(λi, λ–i), λ–i ∈ ∆(A–i)} ⊆ Rm.

Average Payoff: ūi,t = 1
t
∑t

ℓ=1 ui(at).

Feasible Avg Payoffs: co(ui) := co({ui(a), a ∈ A}) ⊆ Rm.
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Approachability

Definition

C ⊆ Rm is

approachable by player i if ∃σi s.t. ∀ε > 0, ∃T : ∀σ–i, Pσ(d(ūi,t,C) < ε,∀t ≥ T) > 1 – ε; in
this case, σi approaches C for player i; and

excludable by player i if ∃δ s.t. set Cc
δ
:= {x | d(x,C) ≥ δ} is approachable by player i; if

strategy σi approaches Cc
δ
, then it excludes C for player i.

Approachable by a player if can guarantee that average payoff approaches the set wp1
uniformly over opponent’s strategies: Pσ(limt→∞ d(ūt,C) = 0) = 1.

Remark

(1) If σi approaches (resp. excludes) C, then it approachers (resp. excludes) the clo-
sure of C.

(2) C cannot be approachable by one player and excludable by the other.

(3) If C ⊆ D and C is approachable by a player, then D is approachable by the same
player.
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B-Sets

Definition

Let D ⊆ Rm, x, y ∈ Rm.

Normal cone of D at y is given by ND(y) := {n ∈ Rm|n · (z – y) ≤ 0, ∀z ∈ D}.

Projection of x ∈ Rm to D is given by PD(x) := argminy∈D ∥y – x∥.

Remark

(1) (x – y) ∈ ND(y) =⇒ y ∈ PD(x).

(2) If D is convex, then (x – y) ∈ ND(y) ⇐= y ∈ PD(x).

Definition

C is B-set for player i if, ∀x ∈ co(ui) \ C, ∃y ∈ PC(x) and λi ∈ ∆(Ai) s.t. (x – y) ∈ NUi(λi)(y),
i.e., ∀λ–i, (ui(λi, λ–i) – y) · (x – y) ≤ 0.
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Approachability

Definition

C is B-set for player i if, ∀x ∈ co(ui) \ C, ∃y ∈ PC(x) and λi ∈ ∆(Ai) s.t. (x – y) ∈ NUi(λi)(y),
i.e., ∀λ–i, (ui(λi, λ–i) – y) · (x – y) ≤ 0.

Theorem

If C is closed B-set for player i for every t, then it is approachable by player i.

Gonçalves (UCL) Approachability, Calibration, and Adaptive Algorithms 10



Convergence of Non-negative Almost Supermartingales
We’ll need this:

Theorem (Robbins and Siegmund 1971)

Let (Ft) be filtration and (Vt)t≥0 be nonnegative, adapted. Suppose there are nonnega-
tive, Ft-adapted processes (ξt), (βt), (ζt) s.t.

E[Vt+1 | Ft] ≤ (1 + ξt)Vt – ζt + βt, t ≥ 0,

with
∑∞

t=0 ξt < ∞ and
∑∞

t=0 βt < ∞ a.s.

Then, Vt converges a.s. to a finite, nonnegative limit V∞, and
∞∑
t=0

ζt < ∞ a.s.

Going beyond Doob’s MCT: convergence for non-negative almost supermartingales.
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Convergence of Non-negative Almost Supermartingales

Theorem (Robbins and Siegmund 1971)

Let (Ft) be filtration and (Vt)t≥0 be nonnegative, adapted. Suppose there are nonnega-
tive, Ft-adapted processes (ξt), (βt), (ζt) s.t.

E[Vt+1 | Ft] ≤ (1 + ξt)Vt – ζt + βt, t ≥ 0,

with
∑∞

t=0 ξt < ∞ and
∑∞

t=0 βt < ∞ a.s.

Then, Vt converges a.s. to a finite, nonnegative limit V∞, and
∞∑
t=0

ζt < ∞ a.s.

Corollary

If nonnegative (Vt) satisfiesE[Vt | Ht–1] ≤ (1–αt)Vt–1+βt with
∑

t αt = ∞ and
∑

t βt < ∞,
then Vt → 0 a.s.

Useful corollary: ξt = 0, ζt = αtVt with αt ∈ [0, 1]. If
∑

t αt = ∞, then V∞ = 0 a.s.

Since
∑

t αtVt < ∞; if
∑

t αt = ∞, only possible limit V∞ is 0.
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Approachability

C

y

ūi,t

Ui(λi)
E[ui,t+1]

E[ūi,t+1]

Proof

Step 1: Projection Rule.
(1) Let yt–1 ∈ PC(ūi,t–1).

(2) If ūi,t–1 ∈ C, then play any λi,t ∈ ∆(Ai).

(3) If ūi,t–1 /∈ C, then, as C is B-set, there is λi,t ∈ ∆(Ai) s.t. ∀λ–i,
(ui(λi,t, λ–i) – yt–1) · (ūi,t–1 – yt–1) ≤ 0.

(4) Play λi,t at stage t.
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Approachability

Proof

Step 2: One-Step Inequality.

Update formula: ūi,t = ūi,t–1 + 1
t (ui,t(at) – ūi,t–1). Let Vt := d(ūi,t,C) = ∥ūi,t – yt∥2.

Since yt–1 ∈ C, then ∥ūi,t – yt∥2 ≤ ∥ūi,t – yt–1∥2.

Expanding: ∥ūi,t–yt–1∥2 = ∥ūi,t–1–yt–1+ 1
t (ui,t(at)– ūi,t–1)∥2 = ∥ūi,t–1–yt–1∥2+ 2

t (ui,t(at)–
ūi,t–1) · (ūi,t–1 – yt–1) + 1

t2 ∥ui,t(at) – ūi,t–1∥2.

• (ui,t(at) – ūi,t–1) · (ūi,t–1 – yt–1) = (ui,t(at) – yt–1) · (ūi,t–1 – yt–1) – ∥ūi,t–1 – yt–1∥2.
• B-set: E[(ui,t(at)–yt–1) · (ūi,t–1–yt–1)|Ht–1] = (ui,t(λi,t, λ–i,t)– ūi,t–1) · (ūi,t–1–yt–1) ≤ 0.
• ui,t ∈ [–M,M]m =⇒ ∥ui,t(at) – ūi,t–1∥2 ≤ 2∥ui,t∥2 ≤ 4mM2.

E[∥ūi,t – yt∥2 | Ht–1] ≤ E[∥ūi,t – yt–1∥
2 | Ht–1]

= ∥ūi,t–1 – yt–1∥
2 + E[ 1

t
(ui,t(at) – ūi,t–1) · (ūi,t–1 – yt–1) +

1
t2
∥ui,t(at) – ūi,t–1∥

2 | Ht–1]

≤ ∥ūi,t–1 – yt–1∥
2 + 2

t
E[(ui,t(at) – yt–1) · (ūi,t–1 – yt–1) | Ht–1] –

1
t
∥ūi,t–1 – yt–1∥

2 + 1
t2

4mM2

≤
(
1 – 2

t

)
∥ūi,t–1 – yt–1∥

2 + 1
t2

4mM2
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Approachability

Proof

Step 3: Apply Robbins and Siegmund (1971).

E[∥ūi,t – yt∥2 | Ht–1] ≤
(
1 – 2

t

)
∥ūi,t–1 – yt–1∥

2 + 1
t2

4mM2

Satisfies conditions of Robbins and Siegmund (1971)’s corollary.

=⇒ ∥ūi,t – yt∥2 → 0 a.s.
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Generalisations and Variations

Theorem (Blackwell 1956)

If C is B-set for player i, then it is approachable by player i.

Generalisations and Variations:
Lehrer (2002 IJGT): generalises Blackwell’s approachability theorem to
infinite-dimensional spaces.

Hou (1971 AMS): A closed set C is approachable by player i if and only if it contains
a B-set for player i.
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Generalisations and Variations

Theorem 14.25 (Maschler, Solan, and Zamir 2013)

If C is convex and closed, then C is approachable by one player if and only if it is not
excludable by the other player.

Notation:
H(x, y) := {z ∈ Rm|(x – y) · (z – y) = 0} Hyperplane passing through y that’s
orthogonal/perpendicular to line passing through x and y.

H–(x, y) := {z ∈ Rm|(x – y) · (z – y) ≤ 0} Half-space defined by hyperplane H(x, y).

Theorem 14.24 (Maschler, Solan, and Zamir 2013)

If C is convex and closed, then the following are equivalent:
(1) C is approachable by player i; (2) C is B-set for player i; and

(3) ∀ half-spaces H–(x, y) containing C, ∃λi ∈ ∆(Ai) : ∀λ–i, ui(λi, λ–i) ∈⊆ H–(x, y).

For convex sets, approachability is equivalent to B-set property!

Since any half-space containing C is approachable, closed and convex, it must also be a
B-set. [(3) says a bit more than this, but this is the idea.]
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Approachability with Time-Varying Payoffs

Setup:
Actions Ai, i = 1, 2, A := A1 × A2; Histories Ht := At, H := ∪tHt; Strategies

σi : H → ∆(Ai), λi ∈ ∆(Ai).
For every t = 1, 2, ..., i = 1, 2, ui,t : A → [–M,M]m with u2,t = –u1,t.
Ui,t(λi) := {ui,t(λi, λ–i), λ–i ∈ ∆(A–i)}.
(Note uniform bound on payoffs.)

Let ūi,T := 1
T
∑T

ℓ=1 ui,t(at).

Definition

C ⊆ Rm is approachable by player i if ∃σi s.t. ∀ε > 0, ∃T : ∀σ–i, Pσ(d(ūi,t,C) < ε, ∀t ≥
T) > 1 – ε; in this case, σi approaches C for player i.
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Approachability with Time-Varying Payoffs

Definition

C is strong B-set for player i if, ∀t, ∀x ∈ ∪t co(ui,t) \ C, ∃y ∈ PC(x) and λi ∈ ∆(Ai) s.t.
(x – y) ∈ NUi,t(λi)(y), i.e., ∀λ–i, (ui,t(λi, λ–i) – y) · (x – y) ≤ 0.

Theorem

If C is closed strong B-set for player i, then, C is approachable by player i.

Proof we used can be used with minor modifications.
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Approachability with Time-Varying Payoffs

Definition

C is B-set for player i at time t if, ∀x ∈ co(ui,t) \ C, ∃y ∈ PC(x) and λi ∈ ∆(Ai) s.t.
(x – y) ∈ NUi,t(λi)(y), i.e., ∀λ–i, (ui,t(λi, λ–i) – y) · (x – y) ≤ 0.

Theorem

If C is closed and convex and a B-set for player i for every t, then it is approachable by
player i.
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Approachability with Time-Varying Payoffs

Proof

Step 1: Projection Rule.
(1) Let yt–1 ∈ PC(ūi,t–1).

(2) If ūi,t–1 ∈ C, then play any λi,t ∈ ∆(Ai).

(3) If ūi,t–1 /∈ C, note: C convex and closed =⇒ (ūi,t–1 – yt–1) ∈ NC(yt–1) ⇐⇒
(ūi,t–1 – yt–1) · (z – yt–1) ≤ 0 ⇐⇒ C ⊆ H–(ūt–1, yt–1).

(4) C convex, closed,B-set at t+C ⊆ H–(ūt–1, yt–1) =⇒ ∃λi ∈ ∆(Ai) : ∀λ–i, ui,t(λi, λ–i) ∈⊆
H–(ūt–1, yt–1) ⇐⇒ λi,t ∈ ∆(Ai) : ∀λ–i(ūi,t–1 – yt–1) · (ui,t(λi,t, λ–i) – yt–1) ≤ 0.

(5) Play λi,t at stage t.
Steps 2 and 3 as before, just replacing ui with ui,t.
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Approachability with Time-Varying Payoffs

Definition

C is strong B-set for player i if, ∀t, ∀x ∈ ∪t co(ui,t) \ C, ∃y ∈ PC(x) and λi ∈ ∆(Ai) s.t.
(x – y) ∈ NUi,t(λi)(y), i.e., ∀λ–i, (ui,t(λi, λ–i) – y) · (x – y) ≤ 0.

Definition

C is B-set for player i at time t if, ∀x ∈ co(ui,t) \ C, ∃y ∈ PC(x) and λi ∈ ∆(Ai) s.t.
(x – y) ∈ NUi,t(λi)(y), i.e., ∀λ–i, (ui,t(λi, λ–i) – y) · (x – y) ≤ 0.

With time-varying payoffs, it matters whether ∀x ∈ ∪t co(ui,t) \ C or ∀x ∈ co(ui,t) \ C!

Strong B-set (non-canonical terminology) + closed is enough for approachability.

B-set at every t + closed is NOT enough for approachability; counterexamples exist.
Need convexity to make it work in general.
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Application: Picking Experts

S states of nature. A actions. Payoffs u : A× S → R. Set of experts E.

Every period t,
(1) state st realises,
(2) each expert recommends action ae,t ∈ A,
(3) DM chooses which expert to follow et ∈ E and adopts their recommended action,
(4) payoffs realise, and DM observes st.
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Application: Picking Experts

A actions. S states of nature. Payoffs u : A× S → R. Set of experts E.

History: ht ∈ Ht := (S× A|E| × E)
t–1

(previous states, what each expert recommended,
expert chosen). H := ∪tHt.

Strategy: σ : H → ∆(E).

Average payoff: ūT(σ) := 1
T
∑

t≤T
∑

e σ(ht)(e)u(ae,t, st).

Payoff from following particular expert e: ūT(e).

Small problem: DM doesn’t know what experts actually know, whether have full info,
partial, no info, biased, etc.

Definition

DM’s σ is no-regret strategy if ∀e ∈ E and each sequence s1, s2, ...,

Pσ

(
lim inf
t→∞

ūt(σ) – ūt(e) ≥ 0
)

= 1.

Does no-regret strategy even exist? Can we characterise it?
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Application: Picking Experts

Theorem

The DM has a no-regret strategy.

Proof

Opponent: nature, choosing σ0 : H → ∆(S). C := R|E|
+ .

Let ut : E × S → R be s.t. ut(e, s) = u(ae,t, s).

For λ ∈ ∆(E) and γ ∈ ∆(S), let vt(λ, γ) := (ut(λ, γ) – ut(e, γ))e∈E ∈ R|E|.

Let v̄T := 1
T
∑

t≤T vt(σ(ht),σ0(ht)). Regret vector: no-regret ⇐⇒ lim inft v̄t ∈ C.

For x ∈ R|E|, projection onto C is y := x+ (positive part), and the normal is x– := y – x
(negative part).

Choose the Blackwell action at x: if
∑

e x
–
e > 0, set

λ
x(e) := x–e∑

e′ x–e′
(put weight on experts relative to which you are behind),

and any λ
x if x ∈ C. Note: λ

x = regret matching!
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Application: Picking Experts – Proof (via Blackwell)

Proof

C := R|E|
+ . vt(λ, γ) := (ut(λ, γ) – ut(e, γ))e∈E ∈ R|E|; v̄T := 1

T
∑

t≤T vt(σ(ht),σ0(ht)).

For x ∈ R|E|, y := x+, x– := y – x. For ¬(x ≥ 0), set λ
x(e) := x–e∑

e′ x–e′
.

For any opponent choice γ ∈ ∆(S),
(i) ¬(x ≥ 0) =⇒ ∥x–∥ = ∥x – y∥ > 0;
(ii) 0 ≥ (vt(λx , γ)–y)·(x–y) = (x+–vt(λx , γ))·x– = x+ ·x––vt(λx , γ)·x– = –vt(λx , γ)·x–.
Note that

x– · vt(λx , γ) =
∑
e

x–e

[∑
e′

λ
x(e′)ut(e

′, γ) – ut(e, γ)

]

=
∑
e′

∑
e x

–
e∑

e′′ x–e′′
x–e′ut(e

′, γ) –
∑
e

x–e ut(e, γ) =
∑
e′

x–e′ut(e
′, γ) –

∑
e

x–e ut(e, γ) = 0.

Hence C is closed, convex, B-set at every t. Blackwell’s approachability theorem with
time-varying payoffs =⇒ v̄t approaches C a.s., i.e.,
lim inf
t→∞

(
ūt(σ,σ0) – ūt(e,σ0)

)
≥ 0 for all e ∈ E and any of nature’s moves σ0.
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Application: Picking Experts

Theorem

The DM has a no-regret strategy.

Strategy (implementable): compute current average regrets x := v̄t–1; if x /∈ C play λ
x.

No need to know anything about the experts.
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Hannan (1957) Consistency

Setup:
Two players face repeated game.

Actions: Ai; Stage-Game Payoffs: u1 : A1 × A2 → R u2 := –u1;

Histories: Ht := At, H := ∪tHt; Strategies: σi : H → ∆(Ai); λi ∈ ∆(Ai).

Expected Payoffs: ui(σ(ht)).

Average Payoffs: ūi,T(σ) := 1
T
∑

t≤T ui(at).

Average Expected Payoff: ūi,T(σ) := 1
T
∑

t≤T
∑

a σ(ht)(a)ui(a).

Benchmark: (External) Regret
External regret: maxai∈Ai ūi,t(ai) – ūi,t(σ).
External regret: comparison relative to swapping to fixed action.
Hannan consistency: lim sup

T→∞
max
ai∈Ai

ūi,t(ai) – ūi,t(σ) ≤ 0 a.s.

Goal: show existence of Hannan consistent strategy.

Boils down to picking experts when each actions is consistently recommended by
same expert.

Alternative via SFP
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Smoothed Fictitious Play and Universal Consistency

Smoothed Fictitious Play (SFP)

Let U ∈ RA, c(λ) := DKL(λ||(1/|A|)) =
∑

a λ(a) ln(λ(a)) + ln(|A|), V(U,η) := maxλ∈∆(A) λ ·
U – η c(λ), and λ

∗(U,η) := argmaxλ∈∆(A) λ · U – η c(λ). For any t ≥ 2, let σ(ht) ≡ λt :=
λ
∗(Ut–1,ηt) where Ut := (u(a, γ̄t))a∈A and (ηt) : ηt ↓ 0.

Can generalise to additive perturbed utility with infinite mg cost at boundary of simplex.

Interpretation: best respond to slightly perturbed empirical model; perturbations vanish.

No ties.

Proposition 4.5 (Fudenberg and Levine (1998; 1999 GEB))

Under SFP, lim sup
t→∞

max
ai∈Ai

ūi,t(ai) – ūi,t(σ) ≤ 0 a.s.

Can also accommodate time-varying payoffs.
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Calibration

Important element of learning in games: forecasting opponent.

Calibration: from learning literature (Dawid 1982 JASA)
Suppose that, in a long conceptually infinite sequence of weather forecasts, we
look at all those days for which the forecast probability of precipitation was, say,
close to some given value p and assuming these form an infinite sequence deter-
mine the long run proportion ρ of such days on which the forecast event rain in
fact occurred. The plot of ρ against p is termed the forecaster’s empirical calibra-
tion curve. If the curve is the diagonal ρ = p, the forecaster may be termed well
calibrated.

Not being calibrated is bad.
Dawid (1982 JASA): If data generated by probabilistic model, then forecasts
generated by that model are a.s. calibrated.

Not being calibrated =⇒ Have wrong probabilistic model.
Statisticians, pollsters, forecasters want to be calibrated.
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Aspiring to Calibration

https:
//www.worldclimateservice.com/2020/07/06/what-is-forecast-reliability/
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Aspiring to Calibration

https://www.science.org/content/blog-post/
analysis-prediction-results-united-states-congressional-elections-2018
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Aspiring to Calibration

(Foster Hart 2021 JPE)
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Aspiring to Calibration

(Foster Hart 2021 JPE)

Gonçalves (UCL) Approachability, Calibration, and Adaptive Algorithms 34



Aspiring to Calibration

(Foster Hart 2021 JPE)
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Aspiring to Calibration

https://www.football-data.co.uk/blog/wisdom_of_the_crowd.php
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Calibrated Learning: Setup
Stage Game

Players i ∈ {1, 2}; actions Ai finite; A = A1 × A2.
Payoffs ui : A → R.

Forecasts: ∆(A–i).

Repeated Play: t = 1, 2, . . . .
History Ht := (∆(A–i)××A)t–1, H := ∪tHt.
Strategies σi : H → ∆(Ai); realised actions at = (a1,t, a2,t).
Empirical distribution σ̄t ∈ ∆(A): σ̄t(a) := 1

t
∑

s≤t 1{as=a}.

Beliefs and Behaviour
Player i’s beliefs σ

i
–i : H → ∆(A–i).

Myopic best replies: ai,t ∈ argmax
a′i

ui(a
′
i ,σ

i
–i)

Fix a deterministic tie-breaking rule.

Forecasting Rule: φi : H → F.
Deterministic: φi : H → F ⊆ ∆(A–i),
i.e. fi,t ≡ φi(ht) = σ

i
–i,t ∈ F.

Stochastic: φi : H → ∆(F). Realised forecast fi,t ∼ φi(ht).
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Calibration

Assume F finite; F = {σ1
–i, ...,σ

M
–i}.

Forecast Counts: nmi,t :=
∑

s≤t 1{fi,s=σm
–i}
.

Conditional Empirical Frequency: σ̄
m
–i,t :=

∑
s≤t a–i,s1{fi,s=σm–i }

nm
i,t

whenever nmi,t > 0.

Calibration Error of Forecast m: kmi,t := ∥σ̄
m
–i,t – σ

m
–i∥n

m
i,t /t if n

m
i,t > 0; kmi,t := 0 ow.

Calibration Score: Ki,t :=
∑

m kmi,t .

Definition (Foster and Vohra 1998 Biometrika)

Forecasting rule φi is ε-calibrated if for every σ–i

lim sup
t→∞

Ki,t < ε a.s.
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Calibrated Forecasts

Remark (Oakes 1985 JASA; Dawid 1985 JASA)

For small enough ε, no deterministic forecasting rule can be ε-calibrated.

Theorem (Foster and Vohra 1998 Biometrika)

∀ε > 0, there is ε-calibrated forecasting rule.
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Calibrated Forecasts

Foster recalls that “this paper took the longest to get published of any I have
worked on. I think our first submission was about 1991. Referees simply did not
believe the theorem – so they looked for amazingly tiny holes in the proof. When
the proof had been compressed from its original 15-20 pages down to about 1, it
was finally believed.” (in Olszewski 2015)

Proving the calibration rule theorem
Original proof: Foster and Vohra (1998 Biometrika).
Hart (2023): proof via minmax theorem (existence).
Foster (1999 GEB): proof via Blackwell approachability.
Fudenberg and Levine (1999 GEB): specific construction.
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Calibrated Forecasts

Proof Idea

Quadratic Cost of Forecast m: cmi,t := ∥σ̄
m
–i,t – σ

m
–i∥

2nmi,t if nni,t > 0; cni,t := 0 ow.

Total Cost: Ci,t :=
∑

m cmi,t .

Fix a partition Πi of ∆(A–i) where:
Πi = {Bm

–i}
M
m=1 of ∆(A–i), for some finite M;

Each Bm
–i is convex and σ

m
–i ∈ Bm

–i is the centroid of Bm
–i.

Fineness of grid: maxm maxσ–i∈Bm
–i
∥σ

m
–i – σ–i∥ ≤ η.

Write Πi(M,η)

Player i chooses φi : H → F.
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Calibrated Forecasts

Proof Idea

Quadratic Cost of Forecast m: cmi,t := ∥σ̄
m
–i,t – σ

m
–i∥

2nmi,t if nni,t > 0; Ci,t :=
∑

m cmi,t .

gt(m, a–i) := E[Ci,t – Ci,t–1 | Ht–1, fi,t = σ
m
–i, a–i,t = a–i] = (nmi,t–1 + 1)

∥∥∥ σ̄
m
–i,t+1m
nm
i,t–1+1

– σ
m
–i

∥∥∥2
– cmi,t–1.

Let gt be payoffs in zero-sum game where i chooses λ ∈ ∆(M) and nature γ ∈ ∆(A–i).

T-initialised myopic strategies:
(1) Initialisation Phase: Each pure strategy repeated T times.
(2) At t > TM, choose λt = maxmin strategy in zero-sum game with payoffs gt.

Theorem (Fudenberg and Levine (1999 GEB))

For any ε, ∃Πi(M,η) s.t. T-initial myopic strategy satisfies lim supCi,t/t ≤ ε a.s.

Lemma (Fudenberg and Levine (1999 GEB))

After the initialisation phase, a T-initial myopic strategy has gt ≤ 1
T+1 + η

2.
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Calibration

(Foster Hart 2023 TE)

Calibration Score: Kt := 1
t
∑

ℓ≤t
∑

m 1{fℓ=σm}∥σ̄
m
ℓ – fℓ∥2.

Calibration: getting Kt arbitrarily close to 0.

Two calibrated forecasts can be wildly different regarding accuracy of predictions.
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Quadratic Scoring Rule

Brier Score (1950): Bt := 1
t
∑

ℓ≤t ∥aℓ – fℓ∥2.
Original QSR of belief elicitation. F1 has Bt = 0; F2 has Bt = 1/4.

Refinement Score: Rt := 1
t
∑

ℓ≤t
∑

m 1{fℓ=σm}∥σ̄
m
ℓ – aℓ∥2.

Captures within-bin variance of forecasts.

Bt = Rt +Kt. (E[X2] = V(X) + E[X]2).

Is there natural trade-off between calibration and refinement?

For any forecast rule, is it possible to calibrate Kt without increasing Rt?
Offline, yes. Take forecast rule and, for each bin m, readjust the forecast σ

m to
correspond to within-bin historical frequency. Keep Rt (within-bin variance) and
eliminate Kt.

‘Calibeating’: Reducing Brier score by amount equal to calibration score.
And procedures to do this online, i.e, on-the-fly?
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Calibeating

Foster Hart (2023 TE), Calibeating Beating forecasters at their own game
Typical calibrated algorithms: get zero calibration score, but do rather poorly at
refinement score. Would suggest trade-off.

Point of the paper: for any forecast rule, it is possible to obtain a calibrated
forecast (Kt → 0) without increasing the refinement score.

Procedure 1: replace each forecast by empirical frequency on previous days in which
this forecast was made.

Issue: Procedure may not yield calibrated forecasts. Can do better.

Procedure 2: Self-calibeating = Calibrating; issue of infinite regress.
Calibeating by calibrated forecast via stochastic forecast-hedging calibration for
each bin.
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Other Topics

Detecting the Expert
Issue: calibration seems to suggest we cannot differentiate between expert and
ignorant.

Not exactly true. E.g., get putative expert to submit theory at time 0; can find tests
that cannot be ignorantly passed on almost all data sets (Olszewski and
Sandroni 2009 AnnStat, A nonmanipulable test).

Bayesian tester approach: Stewart 2011 JET, Nonmanipulable Bayesian testing.

Relation Between Calibration and Learning
Kalai, Lehrer, and Smorodinsky (1999 GEB): equivalence between different notions
of merging and of calibration. (Will make more sense later on.)

Olszewski (2015 Ch), Calibration and Expert Testing: comprehensive survey on
calibration.
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Learning in Games

Convergence issues of the learning in games:
Generalised FP: if converge, asymptotic behaviour is Nash-like; but convergence
not assured.

Similar issues with replicator dynamic and other models.

Foster and Vohra (1997 GEB): different learning basis – calibration – yields different
solution concept – correlated equilibrium.
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Correlated Equilibrium

Players I. Actions Ai; A = ×iAi. Stage Payoffs ui : A → R.

Correlated Equilibrium: p ∈ ∆(A) :
∑

a–i
p(ai, a–i)(ui(ai, a–i) – ui(a′i , a–i)) ≥ 0,

∀i ∈ I,∀ai, a′i ∈ Ai.

Correlated ε-Equilibrium: p ∈ ∆(A) :
∑

a–i
p(ai, a–i)(ui(ai, a–i) – ui(a′i , a–i)) ≥ –ε,

∀i ∈ I,∀ai, a′i ∈ Ai.

Game repeated t = 1, 2, .... Stage payoffs ui(ai,t, a–i,t).

Empirical frequency: p̄t ∈ ∆(A) s.t. p̄t(a) = 1
t
∑

ℓ≤t 1{aℓ=a}.
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Calibrated Learning =⇒ Correlated Equilibrium

Theorem 1 (Foster and Vohra 1997 GEB)

Suppose each player uses a calibrated forecasting scheme (on arbitrarily fine parti-
tions) and in each t plays myopic best reply to their forecast (fixed tie-breaking). Then
empirical frequency of play p̄t ∈ ∆(A) converges to set of correlated equilibria of stage
game.

Idea

Take player i’s forecasts as signal.

In the limit, conditional on forecast, joint distribution of opponents coincides with fore-
cast.

Best-response to forecast means no profitable deviation conditional on signal.
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Calibrated Learning =⇒ Correlated Equilibrium

Theorem 1 (Foster and Vohra 1997 GEB)

Suppose each player uses a calibrated forecasting scheme (on arbitrarily fine parti-
tions) and in each t plays myopic best reply to their forecast (fixed tie-breaking). Then
empirical frequency of play p̄t ∈ ∆(A) converges to set of correlated equilibria of stage
game.

Meaning of calibration: whenever you forecast p, reality looks like p on that
subsequence.

Behavioural content: minimal discipline on beliefs + myopic optimality =⇒ CE.

Internal vs external regret: no internal regret also leads to CE.

Design/selection: by designing calibrated grids, any target σ can be attained.
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Attainability of Any Correlated Equilibrium

Theorem 2 (Foster and Vohra 1997 GEB)

For any correlated equilibrium, there exist calibrated forecasts and myopic best replies
such that empirical frequency of play p̄t ∈ ∆(A) converges to that correlated equilib-
rium.

Idea

Construct partitions and representatives matching correlated equilibrium conditionals;
calibrate to them.

Best replies implement the recommended supports; empirical play tracks correlated
equilibrium.
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Learning Dynamics

Actions: Ai, A := ×iA. ui : A → R. I players. X ⊆ Rm convex; X = ×iAi or X = ×i∆(Ai).

Learning dynamic: ẋt = F(xt; u); ẋi = Fi(x; u); F ∈ C1.

Uncoupled dynamics: ẋi only depends on x and ui, not on others’ payoffs; ẋi = Fi(x; ui).

U ⊆ RA has unique NE property if ∀u ∈ U , ⟨I,A, u⟩ has unique NE.

F is Nash-convergent for U if ∀u ∈ U , the learning dynamics always converges to NE,
i.e., F(x∗; u) = 0 for any NE x∗ and limt→∞ xt = x∗ for any x0.

Theorem (Hart and Mas-Colell 2003 AER)

∃u0 such that for any U containing a neighbourhood of u0, no uncoupled dynamics is
Nash-convergent for U . Furthermore, there is U containing a neighbourhood of u0 s.t.
U has unique NE property.

E.g., u0 is game for which FP doesn’t work (Jordan 1993 GEB).
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Uncoupled Dynamics

Theorem (Hart and Mas-Colell 2003 AER)

∃u0 such that for any U containing a neighbourhood of u0, no uncoupled dynamics is
Nash-convergent for U . Furthermore, there is U containing a neighbourhood of u0 s.t.
U has unique NE property.

∃ uncoupled dynamics guaranteeing NE convergence for some families of games (e.g.
SFP for zero-sum, potential games, supermodular games, etc).

∃ uncoupled dynamics that are most of the time close to NE, but not Nash-convergent:
exit infinitely often any neighborhood of NE (Foster and Young 2003 GEB).
Smooth calibrated learning dynamics gets (1 – ε)-close to ε-NE. (Foster and Hart
2018 GEB, Theorem 15)

Calibration + ε-BR gets ε-NE. (Foster and Hart 2021 JPE, Theorem 13)
Both are uncoupled dynamics.

Gonçalves (UCL) Approachability, Calibration, and Adaptive Algorithms 53



Learning (Correlated) Equilibria (bis)

Correlated Equilibria:
Nash equilibrium of game with signals.
Epistemic foundations (Aumann 1974 JMathE; 1987 Ecta).
Available correlating signals may simply make their way into strategic behaviour.

Hart and Mas-Colell (2000 Ecta): simple learning procedure that converges to CE a.s.
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Correlated Equilibrium

Players I. Actions Ai; A = ×iAi. Stage Payoffs ui : A → R.

Correlated Equilibrium: p ∈ ∆(A) :
∑

a–i
p(ai, a–i)(ui(ai, a–i) – ui(a′i , a–i)) ≥ 0,

∀i ∈ I,∀ai, a′i ∈ Ai.

Correlated ε-Equilibrium: p ∈ ∆(A) :
∑

a–i
p(ai, a–i)(ui(ai, a–i) – ui(a′i , a–i)) ≥ –ε,

∀i ∈ I,∀ai, a′i ∈ Ai.

Game repeated t = 1, 2, .... Stage payoffs ui(ai,t, a–i,t).

Empirical frequency: p̄t ∈ ∆(A) s.t. p̄t(a) = 1
t
∑

ℓ≤t 1{aℓ=a}.
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Regret Matching
At time t consider counterfactual play: replacing past play of âi with ai.

wi,t(âi, ai) := ui(ai, a–i,t) if ai,t = âi; otherwise wi,t(âi, ai) := ui(a′i , a–i,t) if ai,t ̸= âi.

Average Payoff Difference: di,t(âi, ai) :=
1
t
∑
ℓ≤t

[
wi,ℓ(âi, ai) – ui(aℓ)

]
.

Average Regret: ri,t(âi, ai) := di,t(âi, ai)+.

Regret Matching: Adjust behaviour more toward actions that regret not having taken:
Switch next period to different action with probability proportional to regret for that
action, i.e., increase in payoff had such change always been made in the past.
λi,t+1(ai) := 1

η
ri,t(ai,t, ai) ∀ai ̸= ai,t; and λi,t+1(ai,t) := 1 –

∑
ai ̸=ai,t

λi,t+1(ai);
η > 2∥ui∥∞|Ai|.

η: measure of inertia; higher η =⇒ lower switching probability.

Very behavioural strategy.

Theorem (Hart and Mas-Colell 2000 Ecta)

If all players play according to regret matching, empirical play frequencies converge to
set of CE of stage game a.s.
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Regret Matching Implies CE

Remark

Converge to regret below ε iff converge to ε-CE.

Proof

For converging p̄t, lim supt→∞ ri,t(âi, ai) ≤ ε ∀i, âi, ai, if and only if
lim supt→∞ di,t(âi, ai) =

∑
a–i

p̄t(âi, a–i)(ui(ai, a–i) – ui(âi, a–i)) ≤ ε, ∀i, âi, ai.
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Regret Matching Implies CE

Theorem (Hart and Mas-Colell 2000 Ecta)

If all players play according to regret matching, empirical play frequencies converge to
set of CE of stage game a.s.

Proof via straight up applying Blackwell’s approachability with payoff vector
vi(a)(ãi, âi) = (1{ai=âi}[ui(ãi, a–i) – ui(âi, a–i)])ãi ,âi∈Ai

∈ R|Ai |2

Speed of convergence: E[ri,t(âi, ai)] ≤ Kt–1/2 (O(t–1/2)).
Can’t do better with stationary mixed strategies (errors of order t–1/2 by CLT).

P(p̄t is ε – CE, ∀t > T) ≥ 1 – δ exp(–δT), where δ = δ(ε). (Large deviation result)
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Regret Matching Implies CE

Theorem (Hart and Mas-Colell 2000 Ecta)

If all players play according to regret matching, empirical play frequencies converge to
set of CE of stage game a.s.

Can extend result to case in which game is not known and others’ choices not
observed. Only observe ui,t(= ui(ai,t, a–i,t)).

Replace di,t(âi, ai) with d̃i,t(âi, ai) := 1
t

[∑
ℓ≤t:ai,t=ai

p̄i,ℓ(âi)
p̄i,ℓ(ai)

ui,ℓ
]
– 1

t

[∑
ℓ≤t:ai,t=âi

ui,ℓ
]
.

See Hart and Mas-Colell (2000 Ecta) for details.

If λi,t+1(ai) = f(ri,t(ai,t, ai)), for f Lipschitz continuous and sign-preserving
(x > (=)0 =⇒ f(x) ≥> (=)0), convergence to CE goes through (Cahn 2004 IJGT;
Hart 2005 Ecta).

Gonçalves (UCL) Approachability, Calibration, and Adaptive Algorithms 59



Uncoupled Learning Implies CE

Theorem (Hart and Mas-Colell 2000 Ecta)

If all players play according to regret matching, empirical play frequencies converge to
set of CE of stage game a.s.

It is thus interesting that Nash equilibrium, a notion that does not predicate coor-
dinated behavior, cannot be guaranteed to be reached in an uncoupled way, while
correlated equilibrium, a notion based on coordination, can. (Hart and Mas-Colell
2003 AER)

‘Conservation Coordination Law’ for game dynamics: some form of “coordination” must
be present, either in the limit static equilibrium concept (such as correlated
equilibrium) or in the dynamic leading to it (such as Nash equilibrium dynamics).
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